Efficient Syntheses and the Nucleophilic Substitution of Dibromo- and Tribromo-azulenequinones: Differences in Reactivity between Five- and Seven-membered Ring Moieties

Ohki Sato,^a Noriko Matsuda,^a Sachiko Yoshioka,^a Akie Takahashi,^a Yoshihiro Sekiguchi,^a Josuke Tsunetsugu^{*a} and (the late) Tetsuo Nozoe^b

^aDepartment of Chemistry, Faculty of Science, Saitama University, Urawa, Saitama 338, Japan ^bTokyo Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131, Japan J. Chem. Research (S), 1998, 108–109 J. Chem. Research (M), 1998, 0635–0647

Efficient syntheses and the nucleophilic substitution of dibromoazulenequinones **5a** and **5b** and tribromoazulenequinones **6a** and **6b** were carried out: the five-membered ring portion of the molecule is proved to be more reactive than the seven-membered ring.

Azulenequinones (AzQs) are novel and one of the most interesting classes of nonbenzenoid quinones¹ and their chemical and physical properties are of particular interest in connection with benzenoid quinones.^{2,3} As a general synthesis of monosubstituted AzQs, a one-pot synthesis of 3-bromo-1,5- and -1,7-AzQs **2a** and **2b** from azulene **3** and various 3-substituted 1,5- and 1,7-AzQs by a nucleophilic substitution reaction has been reported.^{5–7} Concerning the general synthesis of 3,7-disubstituted 1,5- and 3,5-disubstituted 1,7-AzQs **7** and **8** from the corresponding dibromo-1,5- and -1,7-AzQs **5a** and **5b** has been given by one of us (N.T.) in a review.⁵ **5a** and **5b** have been recorded as by-products in the synthesis of **2a** and **2b**.⁶

We report herein a detailed study of an efficient synthesis of **5a** and **5b** *via* 1,3,5-tribromoazulene **4**, and their nucleophilic substitution to afford **7a**,**7b** and **8a**,**8b**. The synthesis of 2,3,7-tribromo-1,5- and 2,3,5-tribromo-1,7-AzQs **6a** and **6b** by the regioselective bromination of **5a** and **5b**, respectively, and their nucleophilic substitution will be also described.

Azulene **3** was boiled with pyridinium tribromide (Py-HBr₃) in benzene to give 1,3,5-tribromoazulene **4** (86%).

In acetonitrile, acetic acid and water, **4** was treated with Py-HBr₃ to give 3,7-dibromo-1,5-AzQ **5a** (41%) and 3,5-dibromo-1,7-AzQ **5b** (23%). When this reaction was performed in aqueous THF and acetic acid,⁶ the yield of **5a** and **5b** was lower (17%).

We consider the reaction mechanism to be that presented in Scheme 1.

We tried further bromination of 5a and 5b. When 5a was treated in THF with Py-HBr₃ and 48% aqueous HBr, a

regioselectively brominated compound, 2,3,7-tribromo-1,5-AzQ **6a** was obtained (89%). **5b** was also converted into **6b** (93%).

The reaction mechanism for this further bromination is shown in Scheme 2.

The results of nucleophilic substitution of **5a** and **5b** with various nucleophiles are shown in Table 1. In methanol, **5a** or **5b** was treated with a catalytic amount of K_2CO_3 to afford monomethoxy-AzQ (at the C-3 position) together with recovered starting material (Entries 1 and 2). In contrast, dimethoxy-AzQs were obtained by using NaOMe as a more reactive nucleophile (Entries 3 and 4). When Et₂NH was used in THF at room temperature, 3-diethylamino-AzQs were obtained but in ethanol bis(diethylamino)-AzQs were produced under refluxing conditions in the presence of an excess of the reagent (Entries 5 to 8).

^{*}To receive any correspondence.

	Substrate	Reaction conditions (mol equiv.)		Yield ^a (%)	
Entry			R	7	8
1	5a	K ₂ CO ₃ (0.1)/MeOH/r.t	OMe	47 ^b	_
2	5b	$K_{2}CO_{3}(0.1)/MeOH/r.t$	OMe	47 ^b	
3	5a	NaOMe (10)/MeOH/r.t.	OMe		81
4	5b	NaOMe (10)/MeOH/r.t.	OMe		68
5	5a	$Et_2NH(3)/THF/r.t.$	NEt ₂	87	
6	5b	$Et_2NH(3)/THF/r.t.$	NEt ₂	86	
7	5a	Et ₂ NH (20)/EtOH/reflux	NEt ₂		83
8	5b	Et ₂ NH (20)/EtOH/reflux	NEt ₂		56
9	5a	$Pr^{\overline{n}}NH_{2}(3)/THF/r.t.$	NHP ⁿ	85	
10	5b	$Pr^{n}NH_{2}(3)/THF/r.t.$	NHPr ⁿ	81	
11	5a	<i>p</i> -Toluidine (3)/THF/r.t.	NHC ₆ H ₄ -p-Me	80	
12	5b	<i>p</i> -Toluidine (3)/THF/r.t.	NHC ₆ H ₄ -p-Me	94	
13	5a	<i>p</i> -Nitrophenol (3)/DABCO (2)/THF/r.t.	OC_6H_4 - p - NO_2	93	
14	5b	p-Nitrophenol (3)/DABCO (2)/THF/r.t.	$OC_6H_4-p-NO_2$	88	
15	5a	Ethanolamine (3)/THF/r.t.	NH[CH ₂] ₂ OH	80	
16	5b	Ethanolamine (3)/THF/r.t.	NH[CH ₂] ₂ OH	92	
17	5a	Azulene (1.2)/AcOH–THF/r.t.	azulen-1-yl	14	
18	5b	Azulene (1.2)/AcOH–THF/r.t.	azulen-1-yl	45	
19	5a	Benzenethiol (1.5)/THF/r.t.	SPh	53	27
20	5b	Benzenethiol (1.5)/THF/r.t.	SPh	56	37
21	5a	Et ₄ NCI (20)/1,4-dioxane/100 °C	CI		88
22	5b	Et ₄ NCI (20)/1,4-dioxane/100 °C	CI	—	79
23	5a	NH_4OAc (3)/THF/r.t.	OH ^c	10 ^b	
24	5b	NH_4OAc (3)/THF/r.t.	OH ^c	21 ^{<i>b</i>}	—

Table 1 Nucleophilic substitution of 5a and 5b

^aIsolated yield. ^b Substrates were recovered. ^cThese compounds were generated from their acetates.

 Table 2
 Nucleophilic substitution of 6a and 6b

				Yield ^a (%)		
Entry	Substrate	Reaction conditions (mol equiv.)	R	9	10	11
1	6a	K ₂ CO ₃ (0.1)/MeOH/r.t.	OMe	39 ^b		
2	6b	K ₂ CO ₃ (0.1)/MeOH/r.t.	OMe	46 ^b	_	_
3	6a	NaOMe (10)/MeOH/r.t.	OMe	14	63	_
4	6b	NaOMe (10)/MeOH/r.t.	OMe	12	66	_
5	6a	$Et_2NH(3)/THF/r.t.$	NEt ₂	59	_	_
6	6b	$Et_2NH(3)/THF/r.t.$	NEt ₂	61	_	_
7	6a	Et ₂ NH (10)/EtOH/reflux	NEt ₂	6	48	_
8	6b	Et ₂ NH (10)/EtOH/reflux	NEt ₂	16 ^c	44 ^c	_
9	6a	Benzenethiol (1.5)/THF/r.t.	SPh	19 ⁶	_	38 ^b 12 ^b
10	6b	Benzenethiol (1.5)/THF/r.t.	SPh	27 ^b	3 ^b	12 ^b
11	6a	NH ₄ OAc (3)/THF/r.t.	OH^d	54	_	_
12	6b	NH_4OAc (3)/THF/r.t.	OH^d	24 ^b	—	—

^aIsolated yield. ^bSubstrates were recovered. ^c2-Bromo-3-diethylamino-5-ethoxy-1,7-AzQ was obtained 25% yield. ^dThese compounds were generated from their acetates.

Thus it is deduced that the reactivity of the five-membered ring moiety (at the C-3 position) is higher than that of the seven-membered one (at C-7 for 5a or C-5 for 5b). Therefore more severe conditions (high temperature, excess of nucleophile, more reactive reagent and polar solvent, etc.) should be needed to cause reaction at the C-5 or C-7 position. Ethanolamine, which contains two possible nucleophilic functional groups, reacted at a more reactve amino group (Entries 15 and 16). Azulene 3 also reacted with 5a and 5b (Entries 17 and 18). Because of the extremely high reactivity of benzenethiol, mono- and di-substituted-AzOs were obtained as a mixture in THF, even at room temperature (Entries 19 and 20). Dichloro-AzQs were produced by the reaction with Et₄NCl in 1,4-dioxane at 100 °C (Entries 21 and 22). NH₄OAc afforded 3-hydroxy-AzQs, which might be produced on the silica gel column by the hydrolysis of the 3-acetoxy derivatives formed as intermediates (Entries 23 and 24).

In Table 2, we show the results of nucleophilic substitution of 6a and 6b. The C-3 position of 6 was more reactive than the C-5 or C-7 position, as in the case of 5. 2-Substituted-AzQs were formed only when benzenethiol was used as the nucleophile (Entries 9 and 10). We thank Professor Klaus Hafner, Darmstadt Technischen Hochshule, for his generous gift of azulene.

Techniques used: 1 H and 13 C NMR, IR, UV–VIS, mass spectroscopy, elemental analysis, TLC

References: 8

Received, 14th July 1997; Accepted, 10th November 1997 Paper E/7/05020H

References cited in this synopsis

- T. A. Turney, in *The Chemistry of Quinonoid Compounds*, ed. S. Patai, Wiley, New York, 1974, ch. 16; H. N. C. Wong, T. L. Chan and T. Y. Luh, in *The Chemistry of Quinonoid Compounds*, ed. S. Patai and Z. Rappoport, Wiley, London, 1988, ch. 26.
- 2 L. T. Scott, M. D. Rozeboom, K. N. Houk, T. Fukunaga, H. J. Lindner and K. Hafner, J. Am. Chem. Soc., 1980, 102, 5169.
- 3 L. T. Scott, in *The Chemistry of Quinonoid Compounds*, ed. S. Patai and Z. Rappoport, Wiley, London, 1988, ch. 24.
- 5 T. Nozoe and H. Takeshita, Bull. Chem. Soc. Jpn., 1996, 69, 1149.
- 6 T. Nozoe, H. Wakabayashi, K. Shindo, T. Kurihara, S. Ishikawa and M. Kageyama, *Chem. Lett.*, 1995, 25.
- 7 T. Nozoe, H. Wakabayashi, K. Shindo and S. Ishikawa, *Chem. Lett.*, 1995, 27.
- 8 J. Palou, Chem. Soc. Rev., 1994, 357.